TRANSFORMATIONS OF METHYL 6-METHYL-2-METHYLSULFANYL-4-OXO-3,4-DIHYDRO-3-PYRIMIDINYLACETATE UNDER OXIDATIVE CONDITIONS

V. Jakubkiene and P. Vainilavicius

The oxidation of methyl 6-methyl-2-methylsulfanyl-4-oxo-3,4-dihydro-3-pyrimidinylacetate by reagents which oxidized the SMe group to SO_2Me gave the products of the further transformation of the corresponding 2-methylsulfonyl-substituted ester obtained: methyl 5,5-dichloro-6-methoxy-6-methyl-2,4dioxohexahydro-3-pyrimidinylacetate (using Cl_2 in 70 or 50% MeOH), its mixture (about 1:10) with methyl 6-methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinylacetate (Cl_2 in 30% MeOH) or only to the latter compound (Cl_2 in H_2O , m-ClC₆H₄CO₃H in CHCl₃, H_2O_2 in MeOH). The reaction did not take place with NaOCl in DMF.

Keywords: methyl 6-methyl-2-methylsulfanyl-4-oxo-3,4-dihydro-3-pyrimidinylacetate, methyl 5,5-dichloro-6-methoxy-6-methyl-2,4-dioxohexahydro-3-pyrimidinylacetate, methyl 6-methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinylacetate.

The alkylsulfonyl group which readily undergoes exchange with nucleophiles is widely used for functionalization of pyrimidines [1-5]. We have previously synthesized the corresponding 2-amino substituted products by treating methyl 6-methyl-2-methylsulfonyl-4-pyrimidinyloxyacetate with amines to give substances having anti-inflammatory activity [6]. The starting ester indicated was readily prepared by oxidation of the corresponding 2-methylsulfanyl-substituted ester using gaseous chlorine in 70% MeOH at -5°C. In this work we have studied the oxidation of methyl 6-methyl-2-methylsulfanyl-4-oxo-3,4-dihydro-3-pyrimidinylacetate (1) by oxidants widely used for conversion of an SMe to SO₂Me group, i.e. gaseous chlorine in aqueous methanol and water [2], hydrogen peroxide [2, 7], sodium hypochlorite [2, 8], and *m*-chloroperoxybenzoic acid [3, 5]. The results obtained are given in Table 1.

The oxidation of compound 1 with gaseous chlorine in 70 or 50% methanol at -7 to -5° C (methods A and B) gave, in place of the expected methylsulfonyl-substituted ester 2, only the corresponding hexahydropyrimidinedione methyl 5,5-dichloro-6-methoxy-6-methyl-2,4-dioxohexahydro-3-pyrimidinylacetate (3) in 58 and 57% yield respectively (Scheme 1). The structure was confirmed by the results of elemental analytical and spectroscopic data.

The IR spectrum shows three C=O absorption bands at 1712, 1737, and 1756 cm⁻¹ and NH group stretching vibrations at 3357 cm⁻¹ and the absorption characteristic of an SO₂Me group at 1300-1330 cm⁻¹ [4, 7] is absent. The UV spectrum shows only one absorption maximum at 217 nm. It should be noted that the UV spectra of the N₍₃₎-alkyl-substituted 4-pyrimidinones and 2,4-pyrimidinediones (including compounds 1, 4) [9,

Vilnius University, Vilnius LT-01513, Lithuania; e-mail: virginija.jakubkiene@chf.vu.lt. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 901-905, June, 2006. Original article submitted November 11, 2004; revision submitted November 30, 2005.

Scheme 1

10] previously synthesized by us have two absorption maxima. Thus the UV spectrum of ester **1** has bands at 226 and 290 nm [10] and the ester **4** at 211 and 263 nm [9]. The ¹H NMR spectrum shows the presence of singlets for two OCH₃ groups at 3.37 and 3.78 ppm and the absence of a signal for the H-5 proton. A singlet at 7.71 ppm is clearly assigned to the NH group since the intensity of this signal is markedly decreased upon addition of deuterated water to the solution studied. A comparison of the ¹³C NMR spectra of compounds **1**, **3** and **4** supports structure **3** (Table 2). The signals for the C₍₅₎ and C₍₆₎ atoms of ester **3** are significantly shifted to higher field relative to the analogous signals for esters **1** and **4** thus pointing to a change in the nature of the bond between these atoms.

It should be noticed that a similar structure was previously assigned to the oxidation products of 2-alkylsulfanyl-4-pyrimidinones using gaseous chlorine in aqueous alcohol and confirmed by reduction of these products to known uracil derivatives [11].

The oxidation of ester 1 by gaseous chlorine in 30% methanol gave a mixture (about 1:10) of the hexahydropyrimidinedione 3 and tetrahydropyrimidinedione 4. The use of water as solvent (D) gave only a low yield of product 4 which separated as a mixture (1:1) with the starting ester 1 (the ratio of compounds 1 and 4

Method	Oxidation conditions		Product yield, %	
	Oxidant	Solvent	3	4
А	Cl ₂	70% MeOH	58	_
В	Cl ₂	50% MeOH	57	_
С	Cl ₂	30% MeOH	7	73
D	Cl_2	H_2O	_	49*
Е	m-ClC ₆ H ₄ CO ₃ H	CHCl ₃	—	53* ²
F	H_2O_2	MeOH	—	76
G	NaOCl	DMF	—	—

TABLE 1. Conditions and Results for Oxidation of Ester 1

* Yield calculated from ¹H NMR data for the separated mixture (1:1) of compounds 1 and 4.

 $*^2$ Yield calculated as in method D for the separated mixture (1:4) of compounds 1 and 4.

Carbon atom	Chemical shifts, δ, ppm			
Carbon atom	1	3	4	
SCH ₃	15.22	—	—	
CH_3	23.80	16.55	18.55	
NCH ₂	44.54	42.77	41.23	
OCH ₃	—	51.11	—	
COO <u>CH</u> ₃	52.91	52.70	52.60	
C ₍₅₎	107.38	88.04	99.87	
C ₍₆₎	161.71	83.61	151.30	
C(2)	162.13	151.46	152.93	
C ₍₄₎	163.25	163.15	162.76	
C=O	167.54	168.08	168.68	

TABLE 2. ¹³C NMR Spectra of Compounds 1, 3, 4

was determined from the intensities of the H-5 signals in the ¹H NMR spectrum which were seen at 6.07-6.12 and 5.63-5.70 ppm respectively). A similar product was also obtained in the case of *m*-chloroperoxybenzoic acid (E). Compound 4 was separated as a 1:2 mixture with the starting ester 1. The use of the strong oxidant hydrogen peroxide (F) gave a high yield of compound 4 but sodium hypochlorite in DMF (G) did not oxidize compound 1.

The mechanism of the oxidation of ester 1 in the system gaseous chlorine – aqueous methanol (methods A-B) is apparently similar to the mechanism established in the studies [12, 13] which cover the reaction of uracil and orotic acid with bromine water.

It seems likely that in the first stage under the conditions in methods A-E the SMe group in the starting compound 1 is oxidized to the SO_2Me group which is rapidly hydrolyzed. Moreover, chlorination occurs with these reactions since the target sulfone 2 could not be separated.

EXPERIMENTAL

Monitoring of the course of the reaction and the compound purity was carried out on Alugram SIL G/UV-254 plates in the system chloroform–ethyl acetate (1:1). ¹H NMR and ¹³C NMR spectra were recorded on a Varian Unity Inova (300 and 75 MHz respectively) instrument using CD_2Cl_2 and were relative to TMS. IR and UV spectra were taken on a Perkin Elmer Bx FT-IR spectrometer for KBr tablets or in ethanol solution respectively.

The *m*-chloroperoxybenzoic acid was used from the firm Aldrich.

The synthesis of compound 1 has been reported in [14].

Oxidation of Methyl 6-Methyl-2-methylsulfanyl-4-oxo-3,4-dihydro-3-pyrimidinylacetate (1). A. Gaseous chlorine was passed through a stirred suspension of compound **1** (2.28 g, 0.01 mol) in 70% methanol (30 ml) at a temperature of -7 to -5°C to full solution of the starting material and to a greenish coloration of the solution. The reaction mixture was held for 12 h at -8°C. The precipitate formed was filtered off, washed with 1% Na₂S₂O₃ solution and water, and recrystallized from water to give methyl 5,5-dichloro-6-methoxy-6-methyl-2,4-dioxohexahydro-3-pyrimidinylacetate (3) (1.73 g, 58%); mp 143-144°C, R_f 0.65. IR spectrum, v, cm⁻¹: 1712, 1737, 1756 (C=O), 3357 (NH). UV spectrum, λ_{max} , nm (log ε): 217 (3.66). ¹H NMR spectrum, δ , ppm: 1.78 (3H, s, CH₃); 3.37 (3H, s, 6-OCH₃); 3.78 (3H, s, OCH₃); 4.52-4.65 (2H, m, NCH₂); 7.71 (1H, s, NH). Found, %: C 36.37; H 4.27; Cl 23.28; N 9.62. C₉H₁₂Cl₂N₂O₅. Calculated, %: C 36.14; H 4.04; Cl 23.71: N 9.37.

B. Oxidation of ester 1 (2.28 g, 0.01 mol) using method A but in 30 ml of 50% methanol gave the product 3 (1.7 g) which was identical by TLC with the product obtained using method A.

C. Oxidation of compound **1** (2.28 g, 0.01 mol) using method A but in 30 ml of 30% methanol and without holding the reaction mixture for 12 h at -8°C gave methyl 6-methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinylacetate (**4**) (1.45 g); mp 151-152°C (mp 151-153°C [9]), R_f 0.28. The filtrate after separation of product was held at -8°C for 12 h. The precipitated product was filtered off, washed with 1% Na₂S₂O₃ solution and water, and dried to give compound **3** (0.2 g) which was identical to the product prepared by method A (TLC data).

D. Oxidation of compound 1 (2.28 g, 0.01 mol) using method C but in water (30 ml) and at 0°C gave a 1:1 mixture (2.08 g) of compound 1 (R_f 0.69) and 4 (R_f 0.28).

E. *m*-Chloroperoxybenzoic acid (3.63 g, 57-86%, 0.012-0.018 mol of 100% material) was added portionwise with stirring to a solution of compound **1** (2.28 g, 0.01 mol) in chloroform (20 ml) at a temperature from -10 to 0°C. The reaction mixture was stirred at the same temperature for 1 h, held for 5 days at room temperature, cooled, and the precipitate was filtered off and washed with chloroform. The filtrate was dried over Na₂SO₄ and evaporated to give 1.65 g of a 1:2 mixture of compounds **1** and **4**.

F. 20% H_2O_2 (4.7 ml) was added dropwise with stirring to a suspension of compound 1 (2.28 g, 0.01 mol) in methanol (3 ml) at a temperature from -7 to 0°C. The reaction mixture was stirred at room temperature for 1 h and held at the same temperature for 3 days. The precipitate was filtered off, washed with water, and dried to give compound 4 (0.91 g). The filtrate was extracted with chloroform and the extract was dried over Na₂SO₄ and chloroform was distilled off to give compound 4 (0.6 g).

G. A solution of NaOCl (2 M, 10 ml) was added dropwise with stirring and cooling in iced water to a solution of compound 1 (2.28 g, 0.01 mol) in DMF (10 ml). The reaction mixture was stirred at room temperature for 1 h and held for 2 days at the same temperature. After cooling, the precipitate formed was filtered off, washed with water, and dried to give the starting compound 1 (1.5 g). The filtrate was extracted with ether, dried over Na₂SO₄, and ether was distilled off to give an additional amount of compound 1 (0.5 g).

REFERENCES

- 1. D. J. Brown and P. W. Ford, J. Chem. Soc., 568 (1967).
- 2. Z. Budesinsky and J. Vavrina, Collect. Czech. Chem. Commun., 37, 1721 (1972).
- 3. D.-K. Kim, J. Gam, Y.-W. Kim, J. Lim, H.-T. Kim, and K. H. Kim, J. Med. Chem., 40, 2363 (1997).
- 4. Y. M. Volovenko and E. V. Blyumin, *Tetrahedron*, 56, 5185 (2000).
- 5. A. Herrera, R. Martinez-Alvarez, R. Chioua, F. Benabdelouahab, and M. Chioua, *Tetrahedron*, **60**, 5475 (2004).
- 6. V. Jakubkiene, M. M. Burbuliene, G. Mekuskiene, E. Udrenaite, P. Gaidelis, and P. Vainilavicius, *Farmaco*, **58**, 323 (2003).
- M. A. Mikhaleva, G. A. Kolesnichenko, K. I. Rubina, Yu. Sh. Gol'dberg, V. A. Savel'ev, L. Ya. Leitis, M. V. Shimanskaya, and V. P. Mamaev, *Khim. Geterotsikl. Soedin.*, 380 (1986).
- 8. A. Novacek and I. Hedrlin, Collect. Czech. Chem. Commun., 32, 1045 (1967).
- 9. P. Vainilavichius, V. Syadyaryavichiute, and S. Mocishkite, *Khim. Geterotsikl. Soedin.*, 1655 (1992).
- 10. P. I. Vainilavichyus and V. Yu. Syadyaryavichyute, *Khim. Geterotsikl. Soedin.*, 1520 (1987).
- 11. T. B. Johnson and J. M. Spraque, J. Amer. Chem. Soc., 60, 1622 (1938).
- 12. S. Y. Wang, J. Org. Chem., 24, 11 (1959).
- 13. J. Moravek and L. Leseticky, *Collect. Czech. Chem. Commun.*, **33**, 1352 (1968).
- 14. P. I. Vainilavichyus and V. Yu. Syadyaryavichyute, *Khim. Geterotsikl. Soedin.*, 1655 (1987).